Evaluating geometric queries using few arithmetic operations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Range-Aggregate Queries Involving Geometric Aggregation Operations

In this paper we consider range-aggregate query problems wherein we wish to preprocess a set S of geometric objects such that given a query orthogonal range q, a certain aggregation function on the objects S′ = S ∩ q can be answered efficiently. Range-aggregate version of point enclosure queries, 1-d segment intersection, 2-d orthogonal segment intersection (with/without distance constraint) ar...

متن کامل

Solving k-SUM Using Few Linear Queries

The k-SUM problem is given n input real numbers to determine whether any k of them sum to zero. The problem is of tremendous importance in the emerging field of complexity theory within P , and it is in particular open whether it admits an algorithm of complexity O(n) with c < dk2 e. Inspired by an algorithm due to Meiser (1993), we show that there exist linear decision trees and algebraic comp...

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

On Third Geometric-Arithmetic Index of Graphs

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

متن کامل

Some remarks on the arithmetic-geometric index

Using an identity for effective resistances, we find a relationship between the arithmetic-geometric index and the global ciclicity index. Also, with the help of majorization, we find tight upper and lower bounds for the arithmetic-geometric index.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Algebra in Engineering, Communication and Computing

سال: 2012

ISSN: 0938-1279,1432-0622

DOI: 10.1007/s00200-012-0172-x